

Galactic Aberration in VLBI Analysis: Findings of the IVS WG8

Dan MacMillan NVI Inc. at NASA/GSFC and the IVS Working Group 8 Members

IVS General Meeting Longyearbyen, Norway – June 5, 2018

WG Members

Dan MacMillan¹, Alan Fey², John Gipson¹, David Gordon¹,

Chris Jacobs³, Hana Krásná⁴, Sebastien Lambert⁵,

Chopo Ma⁶, Zinovy Malkin⁷, Oleg Titov⁸,

Guangli Wang⁹, Minghui Xu⁹, Norbert Zacharias²

¹NVI, Inc. at NASA Goddard Space Flight Center, United States
²United States Naval Observatory, Washington DC, United States
³Jet Propulsion Laboratory, Pasadena, California
⁴Technische Universität Wien, Vienna, Austria
⁵Paris Observatory, SYRTE, Paris, France
⁶NASA Goddard Space Flight Center, United States
⁷Pulkovo Observatory, St. Petersburg, Russia
⁸Geoscience Australia, Canberra, 2601, Australia
⁹Shanghai Astronomical Observatory, Shanghai, PR China

Overview

- What is secular Galactic aberration?
- Working group charter
- How is GA estimated?
 - Geodetic VLBI
 - Galactic astronomy
- Estimates from WG
- Recommendation
- Effects of GA (EOP, source position)

What is Secular Galactic Aberration?

NVI. INC.

Observed Proper Motions

Proper motion field computed from site position time series (RA and DEC uncertainties < 50 µas/yr)

- Observed proper motions: as large as a few hundred µas/yr
 mainly caused by source structure.
- Systematic galactic aberration proper motions $< 6 \mu as/yr$

NVI. INC.

1. Determine an a priori secular aberration drift model for analysis

- Aberration systematic significant relative to the CRF noise floor (40 µas for ICRF2)
- Systematic drift of \sim 5 µas/yr => 100 µas after 20 years
- Aberration estimates from both geodetic VLBI and astrometric VLBI galactic measurements are available

- 2. Investigate significance of the non-galactic center components of the geodetically estimated aberration acceleration vector A
- Non-galactic center components < 25% of amplitude of A
- Investigated dependence on: 1) sessions used, 2) sources included, 3) parametrization of solutions
- Further investigation of possible physical means of producing nongalactic center acceleration is needed

- 3. Consider redefinition of the ICRS to account for aberration
- Not possible for IVS this would have to be done of IAU
- Not necessary simply apply aberration correction as other models are applied in analysis (e.g., annual aberration, precession)

Aberration from Galactic Astronomy

Galactic Astronomy using VLBI observations of Galactic masers

VLBI measurements:

- VLBA, EVN, VERA networks => 136 masers (2016), 18 masers (2009)
- Masers in high-mass star-forming regions
- Trigonometric parallaxes and proper motions are measured

Figure 1. Rotation curve of the Galactic disk. Measure maser values of V and R are also plotted. (Rastorguev et al., 2016)

Modeling of the Galaxy: Parameters include R = radial distance (kpc) to the Galactic center V = circular rotation speed (km/s)

> At Solar system barycenter R=8.30 kpc V=246 km/s

Aberration constant $A = V^2/Rc$

	A _G	σ	V	σ	R	σ	# masers
	µas/yr		km/s		kpc		
Reid (2009)	5.4	0.8	254	16	8.40	0.60	18
Brunthaler (2011)	5.1	0.3	246	7	8.30	0.23	18
Honma (2012)	4.9	0.6	238	14	8.05	0.45	52
Reid (2014)	4.8	0.3	240	8	8.34	0.16	103
Rastorguev (2016)	4.8	0.3	238	7	8.24	0.12	136

weighted mean = $4.9\pm0.17 \mu$ as/yr weighted rms = 0.2μ as/yr

Aberration from Geodetic VLBI

- 1) Global estimation of aberration vector (effect on source positions) [MacMillan, Xu et al.]
- 2) Estimation of proper motions from source position time series + Estimation of A from proper motions [Titov and Lambert]
- 3) Global estimation of scale factors F for each source + Estimation of A from scale factors F [Titov and Krasna]

NVI. INC

Estimates from Geodetic VLBI

		A _G	σ		σ	RA	σ	DEC	σ	
		µas/yr		µas/yr		deg		deg		
Titov&Lambert (2011)	1990-2010	6.3	1.4	6.3	1.5	263	11	-20	12	C/S, time series
Titov&Lambert (2013)	1979-2013	6.4	1.1	6.4	1.1	266	7	-26	7	C/S, time series
Xu (2013)	1980-2011	5.2	0.5	5.8	0.5	243	4	-11	4	C/S, global
Xu (2017)	1980-2016	6.0	0.3	6.1	0.3	271	2	-21	3	C/S, global
MacMillan (2014)	1979-2014	5.3	0.4	5.6	0.4	267	4	-11	6	C/S, global
MacMillan (2017)	1979-2016	5.7	0.3	5.8	0.3	273	3	-22	5	C/S, global
Titov&Krásná (2017)	1979-2016	6.0	0.3	6.1	0.3	260	2	-18	4	VieVS, global
Titov&Krásná(2017)	1993-2016	5.4	0.6	5.4	0.6	273	4	-27	8	VieVS, global
Titov&Krásná (2017)	1979-2016	5.1	0.3	5.2	0.3	281	3	-35	3	VieVS, global/scale

weighted mean = $5.6\pm0.13 \mu as/yr$ weighted rms = $0.4 \mu as/yr$, Galactic center: RA = 266.4 deg, DEC = -28.9 deg

Recommendation

Possible Options:

- 1) Geodetic VLBI weighted mean
- 2) Galactic astronomy weighted mean
- 3) Average of 1 and 2

Self-consistency => Geodetic VLBI value of should be used

Recommended value $A_G = 5.6 \mu as/yr$ for geodetic analysis and specifically for the ICRF3 solution

Aside:

1) The IAU (1985) recommended values of R = 8.5 kpc and V= 220 km/s need to be revised. Inconsistent with recent galactic astronomy 2) => a value of $A_G = 4.0 \ \mu as/yr$ inconsistent with geodetic VLBI.

Aberration Effect on EOP

Effect of Applying aberration (5 µas/yr) on EOP

Uniform nnr source constraints	Offset (2014.0)	Rate (per year)	WRMS
X-pole (µas)	0.43	-0.14	1.84
Y-pole (µas)	2.91	0.09	1.53
UT1 (μs)	0.14	0.01	0.10
Psi (µas)	-1.27	-0.08	3.36
Eps (µas)	-0.18	-0.46	2.75

Weighted nnr	Offset	Rate	WRMS
source constraints	(2014.0)	(per year)	
X-pole (µas)	-0.02	-0.15	1.86
Y-pole (µas)	2.81	0.08	1.53
UT1 (μs)	0.21	0.01	0.10
Psi (µas)	-6.49	-0.08	3.36
Eps (µas)	-15.3	-0.46	2.75

Aberration Effect on Source Positions

D. S. MacMillan IVS General Meeting, Svalbard June 5, 2018

Summary and Conclusions

1. Recommended an aberration constant should be consistent with geodetic VLBI solutions (specifically for the ICRF3 solution)

=> weighted mean of 5.6 \pm 0.2 µas/yr of geodetic VLBI estimates

- 2. ICRF3 working group will use a value close to this value
- 3. Analysis software should be modified to apply a Galactic aberration correction
- 4. Recommended value is fairly close to the Galactic astronomy weighted mean (recent values) = $4.9 \pm 0.2 \mu as/yr$
- 5. Non-galactic center part of the aberration vector estimates have relatively small components < 25% of |A|
 - => Requires further work to determine possible causes
- 6. Working group final report is done