23rd European VLBI Group for Geodesy and Astrometry (EVGA) Working Meeting 14-19 May 2017, Göteborg, Sweden

Investigating the noise floor of VLBI source positions

Karine Le Bail, David Gordon, John Gipson, Dan MacMillan NVI, Inc. @ NASA/GSFC Greenbelt, MD - USA

Outline

- ICRF2 noise floor (TN35).
- Noise floor computed with the Allan variance:
 - 2017a GSFC solution.
 - Allan variance and noise type determination.
 - Difficulties.
- Results for 2017a GSFC solution.
- Future evaluations.

ICRFs evolution

Parameter	ICRF1 (1997) Replace FK5 optical frame	ICRF2 (Jan 1, 2010)	ICRF3 (2018)
Observation Dates	08/1979 – 07/1995 (16 years)	08/1979 – 03/2009 (29.5 years)	08/1979 – 2018 (~38.5 years)
# Observations	1.6M S/X group delays	6.5M S/X group delays	~15M S/X + X/Ka and K delays
# Defining Sources	212	295	200-300
Total Sources	608	3414	4400+ S/X -band 675 X/Ka -band 800 K-band
Noise Floor	~250 µas	~40 µas	20-30 µas
Axis Stability	~20 µas	~10 µas	<10 µas

ICRF2 noise floor

- TN35: Noise floor calculated by decimation test (DSM).
 - gsf08b solution.
 - All experiments ordered chronologically and divided into two sets selected by even or odd session (experiments with the same core network of observing stations).
 - Declination and right ascension noise computed for each 15° declination band in each solution (derived from differences between positions in the two decimation solutions).

Figure 19: Declination and Right Ascension noise for each 15 degree declination band in each solution derived from differences between positions in the two decimation solutions

ICRF2 noise floor

Figure 21: Wrms noise (solid circles) for subsets of 50 sources in each solution as a function of the minimum number of sessions a source was observed. The median formal uncertainty (red triangles) in each subset is shown for comparison. These were derived from differences between positions in the two decimation solutions.

- Noise floor of 15 µas in Right Ascension and 25 µas in Declination.
- As an upper limit, chosen noise floor of 40 μ as.

NVI, INC.

Data studied in this work Latest GSFC solution

- Goddard VLBI source time series file gsf2017a.ts <u>https://gemini.gsfc.nasa.gov/solutions/2017_astro/2017a_ts.html</u>
- Generated on 14 April 2017.
- Databases from August 03, 1979 through March 27, 2017, for a total of 5696 sessions.
- Includes all of the VCS1-6, VCS-II, and UF001 A-D VLBA sessions.
- VLBI time series positions for 4241 sources. Some of these are with only one epoch.

Determination of the noise floor – The Allan variance

- The Allan variance is a statistical tool that gives level and type of noise of time series.
- If $(x_i)_{i=1,n}$ are the measurements and τ the sampling time, the Allan variance is:

$$\sigma^{2}(\tau) = \frac{1}{2} < (\overline{x}_{i+1} - \overline{x}_{i})^{2} >$$

- Cons: it has to be applied to regularly spaced time series.
- The type of noise is determined by the slope of the curve log_{10} (Allan variance) = f(log_{10}(sampling time)).

Determination of the noise floor – Difficulties (1)

- Real data:
 - Sources not observed regularly
 - => difficulties in statistical determination due to:
 - Gaps in between observations;
 - Number of observations.
- Averaging: Yearly, 30-day and 10-day.

Determination of the noise floor – Difficulties (2)

NVI, INC.

Determination of the noise floor – Difficulties (3)

• Real data: Homogeneity (cf. 2014 IVS GM poster)

NVI, INC.

Determination of the noise floor – Selection by level of noise

NVI. INC.

Determination of the noise floor – Source selection

NVI. INC.

Determination of the noise floor – Results

Determination of the noise floor – Results

Conclusions and next questions

- Some of the sources have a noise floor as small as 5 µas.
- The noise floor increases when the declination decreases.
- Very few sources in the deep south (< -50°). Their flicker noise may be due to the small number of observations.

Next steps:

- Use this method of noise floor determination by the Allan variance with the ICRF2 data (2009) and compare.
- For the ICRF3: different analysis centers will submit their ICRF solutions.

Different software packages, different models, different methods of data elimination...

- \Rightarrow Different noise floors depending on the solution;
- \Rightarrow Combined noise floor?