

Tropospheric Delay Raytracing Applied in VLBI Analysis

David Eriksson NVI Inc./Chalmers Univ. of Technology

Dan MacMillan and John Gipson NVI Inc.

- 1. Background
- 2. Raytrace Delay Computation
- 3. VLBI CONT11 Solutions Using Raytrace Delays
- 4. Raytrace Delay Results for Intensives
- 5. Conclusions

Elevation-dependent Tropospheric Delay

$$\tau_{total}^{symmetric}(el) = m_{hydrostatic}(el)\tau_{dry}^{zenith} + m_{wet}(el)\tau_{wet}^{zenith}$$

Azimuthal-dependence approximated with Linear gradient model ("tilted atmosphere")

$$\tau_{gradient}(el, az) = m_{grad}(el)[G_N \cos(az) + G_E \sin(az)]$$

 $\mathcal{M}_{grad}(el) = 1/(\sin(el)\tan(el) + C)$

NMF: (Niell, 1996)

- 1-dim raytrace of N Hemisphere radiosonde troposphere profile data
- Parametrized by day of year (annual period), latitude, and site height

VMF1: (Boehm et al., 2006)

- 1-dim raytrace of ECMWF tropospheric profile data
- Given at 6-hour intervals
- Spatially interpolated to each geodetic site
- Assumed that there is no horizontal refractivity variation
- Mapping functions m(el) were derived by raytracing through uniform atmospheric layers of constant refractivity
- Refractivity profile computed using the (Pressure, Temperature, Relative humidity) profile above the geodetic site location

- Compute total (dry+wet) delays and wet mapping function from numerical weather model for each VLBI observation
- Weather model is the NASA/GSFC GEOS 5.9.1
 - parameters: pressure, temperature, specific humidity, geopotential height
 - time resolution: 3 hours
 - horizontal resolution: 0.5° x 0.625° (~ 50 km)
 - vertical resolution: 72 levels
- Refractivity along raypath is determined by interpolation of the 4D refractivity field
- Use piecewise linear approach to compute raytraced delays
- •Constrain propagation of the ray to a plane of constant azimuth (to minimize computation time)

- NMF hydrostatic delay = a priori tropospheric delay
- Estimate wet zenith delay from VLBI data

- Average correlation all over all CONT11 sites = 0.93
- Raytraced delay accounts for ~90% of the observed delay

- VLBI data sets
 - CONT11
 - UT1 Intensives
- Compare troposphere delay models:
 - NMF hydrostatic delay + NMF wet mapping function
 - VMF1 total (dry+wet) delays + VMF1 wet mapping function
 - Raytrace total (dry+wet) delays + wet raytrace mapping function
- Estimated parameters: site positions, clocks, wet zenith, gradients
- Observation weighting options
 - Baseline weighting
 - Elevation dependent weighting
 - Correlated noise

Baseline weighting

Add a baseline-dependent noise to the formal observation uncertainty => chisquare/dof = 1

 $\sigma'^2_{12} = \sigma^2_{12} + \epsilon^2_{12}$

• Elevation dependent weighting

Add an elevation-dependent noise

$$\sigma'_{12}^2 = \sigma_{12}^2 + [\epsilon_1 m(el_1) + \epsilon_2 m(el_2)]^2$$

Correlated Noise

Second baseline from station 1 $\sigma'_{13}^2 = \sigma_{13}^2 + [\epsilon_1 m(el_1) + \epsilon_3 m(el_2)]^2$

Observations are correlated => correlated noise term in the offdiagonal element of the covariance matrix between observations

CONT11 Baseline Length WRMS

	NMF	VMF1 Total	Raytrace
Weighting	Average (mm)	Average (mm)	Average (mm)
Baseline	6.89	6.75	6.41
Elevation-dep	6.50	6.31	6.04
Correlated noise	6.35	5.96	5.73

• Ordered by baseline length for each site

Elevation cutoff test: Difference 5° and 12° solutions => measure of atmosphere model error

Raytrace: 0.017 ppb VMF1: 0.075 ppb NMF: 0.061 ppb

- Compute VLBI LOD at midpoint between each pair of daily UT1 values
- Interpolate IGS LOD to these midpoint epochs

WRMS difference	(VLBI – GPS)) LOD (µs/day)
-----------------	--------------	----------------

	NMF	VMF1	Raytrace	Numsess
Kokee- Wettzell	25.4	25.2	24.3	80
Tsukuba- Wettzell	28.2	28.3	26.1	59

NVI, inc.

- Compared with VMF1, baseline length repeatabilities are improved with raytracing for 70% of baselines
- Site vertical repeatabilities are improved for 11 of 13 CONT11 sites
- Troposphere scale bias for raytrace solution = 0.017 ppb compared to 0.075 ppb for VMF1 and 0.061 for NMF
- Raytraced wet zenith delay accounts for 90% of the observed wet zenith delay estimated from the VLBI data
- Computation time for the raytraced delay for each observation is 1 msec
- Raytracing service is available that provides raytrace delays for all VLBI sessions since 2000 at http://lacerta.gsfc.nasa.gov.tropodelays

NVI, INC.

Raytraced Zenith Delay

Dry Zenith Delays 2011-09-24 12:00 CT

200

400

600

800

ps

1000

1200

1400

Raytraced hydrostatic zenith (hydrostatic) and wet zenith delays at one epoch (2011-Sept-24-12UT)

D. S. MacMillan IVS GM Shanghai March 2014

NVI, INC.

2011-2013 Baseline Length WRMS

	NMF	VMF1 Total	Raytrace
Weighting	Average (mm)	Average (mm)	Average (mm)
Baseline	10.76	10.16	9.93
Elevation-dep	10.78	10.34	10.13
Correlated noise	10.78	10.35	10.12

2011-2013 Experiment Sessions

