

VLBI Scale Effects

Dan MacMillan NVI Inc.

Unified Analysis Workshop Pasadena – June 27, 2014

NVI, inc.

Systematic Errors Contributing to VLBI Scale

- Pressure loading and hydrology loading
- Antenna gravitational deformation
- Atmospheric delay modeling
- Radio source structure

VLBI Scale Series

VLBI daily series relative to ITRF2008 GSFC2011b sinex weighted mean difference =1.98 mm (0.33 ppb) (from Z. Altamimi) ITRF2008 paper: (1980-2008 data) (Altamimi et al.) => 0.53±0.10 ppb

Hydrology Loading

Hydrology Loading

NVI, INC.

			Annual	
	Offset ppb	Rate ppb/yr	Cosine ppb	Sine ppb
No Loading	0.44 ±0.03	0.005 ±0.003	-0.15 ±0.02	-0.29 ±0.02
Atmos Loading	0.44	0.001	-0.19	-0.32
Atmos+Hydro Loading	0.30	-0.007	-0.03	-0.01

Estimates are relative to ITRF2008. Data period 1980-2008.

Gravitational Deformation

- Coefficients depend on dimensions and structure of antenna
- The functions F, V and R have to be measured for each antenna

Gravitational Deformation

- Measurements of Noto and Medicina (Sarti and Abondanza, 2009,2010) laser scanner (F)+ terrestrial survey (R)+ finite element model (V)
- Model of deformation from Clark and Thomsen (1988) XY mount antenna at Fairbanks (26 meter diameter)

 $\Delta L(e) = -2.4 (1 - sin(e)) \, \text{mm}$

NVI, INC.

Gravitational Deformation

	Offset ppb	Rate ppb/yr
No Model	0.44 ± 0.03	0.005 ± 0.003
Medicina Model	1.24	0.014
Noto Model	0.89	0.011
Fairbanks Model	0.75	0.01

•Scaled each model delay (~ Diam²) to the antenna diameter of each antenna in the solution.

• Estimates are relative to ITRF2008. Data period 1980-2008.

Troposphere Raytracing

- NVI, inc.
- Compute total (dry+wet) delays and wet mapping function from numerical weather model for each VLBI observation
- Weather model is the NASA/GSFC GEOS 5.9.1
 - parameters: pressure, temperature, specific humidity, geopotential height
 - time resolution: 3 hours
 - horizontal resolution: 0.5° x 0.625° (~ 50 km)
 - vertical resolution: 72 levels
- Refractivity along raypath is determined by interpolation of the 4D refractivity field
- Use piecewise linear approach to compute raytraced delays
- •Constrain propagation of the ray to a plane of constant azimuth (to minimize computation time)

CONT11 Baseline Lengths

• Ordered by baseline length for each site

NVI, INC.

Troposphere Scale Bias Error

NVI, inc.

Elevation cutoff test: Difference 5° and 12° solutions CONT11 (2011) => measure of atmosphere model error

Raytrace: 0.017 ppb VMF1: 0.075 ppb NMF: 0.061 ppb

Radio Source Instability

D. S. MacMillan Unified Analysis Workshop, Pasadena, June 2014

- Radio source position estimates can have large rates or even nonlinear variation
 - Identified sources with unstable position time series from among the most frequently observed (geodetic) sources

• Modeled the position variation of unstable sources either by

(1) estimating global spline parameters to fit the variationor (2) estimating positions for each 24-hour observing session

Effect of radio source instability =>

- 1) Spline -0.02 ± 0.01 ppb 0.004 ± 0.002 ppb/yr
- 2) Local $-0.02 \pm 0.02 \text{ ppb}$ $0.008 \pm 0.002 \text{ ppb/yr}$

Scale Error Budget

Error Source	Annual	Annual	Rate	Bias
	Cos	Sin	ppb/yr	ppb
Gravitational			-0.005 to	−0.78 to
Deformation			-0.009	-0.31
Hyd Load	-0.16	-0.31	0.008	0.14
Atm Load	0.04	0.03	0.004	0
Atmosphere			0.010	0.08
Radio source			-0.006	0.02
ITRF2008	-0.16	-0.30	0.025	0.53
	± 0.02	± 0.02	± 0.010	± 0.10