



# Radio Frequency Interference on the SGP and Worldwide

Tom Clark, Scott Galbraith, Jeremy Hill, and Larry Hilliard July 18<sup>th</sup>, 2012

## July 18<sup>th</sup>, SGP Intern Lunch time speaker Agenda

- Scott Galbraith Spectrum Management at GSFC
- Larry RFI on Space Geodesy Project introduction
  - Geremy— Solving the RFI Problems at GGAO
- Larry RFI experienced in Space borne Radiometers
- Tom RFI on VLBI 2010 and legacy systems

# Solving the RFI Problems at GGAO

Mentor: Larry Hilliard

Mentee: Jeremy Hill



## Introduction

RFI – Radio Frequency Interference

The VLBI2010 (12m) picks up on various frequencies within the range of 2 to 14 GHz

#### This is a problem:

- DORIS beacon (2.036 GHz)
- NGSLR radar (9.41 GHz)
- MOB7 radar (9.41 GHz)

## Introduction: GGAO



## **Material Selection**



## Material Selection: Eccosorb SF-9.5

- Service Temperature: -65°F to 325°F
- Frequency range: 1-18GHz
- Performance degrades as incidence angle increases.
  - -16dB has been demonstrated at incident angles out to
    45°
- Reflectivity of -20 dB or less of the normal incident microwave energy.
  - This is slightly less for frequencies less than 2.5 GHz
- (Referred to as "Dark Gray" in tests)

## Material Selection: Eccosorb DSF-9.5

- Service Temperature: -65°F to 329°F
- Frequency range: 3-17GHz
- Performance degrades as incidence angle increases.
  - -16dB has been demonstrated at incident angles out to 45°
- Reflectivity of -20 dB or less of the normal incident microwave energy.
- (Referred to as "Gray" in tests)

## Material Selection: AL100 reflector

- Apply to surface to achieve ~60 dB from 100 MHz to 18 GHz
  - Conductive on one side
- Tolerates 32-122°F
- (Referred to as "Silver" in tests)
- Distributor:
  - LessEMF



# Material Selection: Laminated MW Absorber

- Carbon Base Material (without plastic laminate)
- Offers protection for frequencies up to, and over, 10GHz
- Specs:
  - Resistivity: ~3 Ohms per square
  - Non-conductive surface
- (Referred to as "Black" in tests) dB
- Distributor:
  - LessEMF



## Material Selection: Eccosorb SF-2.0

- Frequency range: 1-18GHz
- Performance degrades as incidence angle increases.
  - -16dB has been demonstrated at incident angles out to
    45°
- Reflectivity of -20 dB or less of the normal incident microwave energy.
- (Referred to as "Sgray" in tests)

# Network Analyzer



## Network Analyzer



## Specs:



110 dB of dynamic range

<.006 dB of trace noise



### Measures:

S-parameters

Insertion loss

Gain

Noise figures

And much more...

# Material Analysis



# Material Analysis: X-band

Best Attenuation to date for X-band:

- Combined Absorber and Reflector:
  - Eccosorb SF 9.5 and AL100 reflector wall shield
  - Eccosorb DSF 9.5 and AL100 reflector wall shield

# Material Analysis: X-band

Material between

P1→:Absorber:reflector:P2→





# S11 & S22 Comparison of Silver and Black

- S11 & S22 Comparison of AL100 (Silver) and Laminated MW Absorber (Black):
  - P1: Absorber (EC SF-9.5)
  - P2: Reflector

#### Amplitude-Dark Gray absorber Black Reflector



#### Amplitude- Dark Gray absorber Silver Reflector



## Material Analysis: X-band

**Transfer Coefficients (Dark Gray Combinations)** 



# Material Analysis:X-band



# S11 & S22 Comparison of Silver and Black

- S11 & S22 Comparison of AL100 (Silver) and Laminated MW Absorber (Black):
  - P1: Absorber (EC DSF-9.5)
  - P2: Reflector

#### Amplitude- Gray Absorber Black Reflector



#### Amplitude – Gray Absorber Silver Reflector



## Material Analysis: X-band

**Transfer Coefficients (Gray Combinations)** 



# Material Analysis: S-band

Best Attenuation to date for S-band:

- Combined Absorber and Reflector:
  - Eccosorb SF 2.0 and AL100 reflector wall shield

# Material Analysis: S-band

-44

#### **Reflection Coefficients**

Frequency



# Material Analysis: S-band

-80

#### **Transfer Coefficients**

Frequency



# Sidelobe Measurement of 12 meter antenna - with beacon deployed near NGSLR LHRS phase center



## Far-Field Region

- On the far side of the antenna
- Radiation pattern does not change shape as a function of distance
- This region is dominated by radiated fields
- The far-field distance is given by:
  - $d\downarrow farfield > 2D12 /\lambda$

## Far-Field Region

• Far-field for DORIS:

- $d \int far field > 2*(12) \int 2/3*10 \int 8/2.036*10 \int 9 = 1.95 km$
- Far-field for NGSLR radar:
  - $d\downarrow farfield > 2*(12) 12 / 3*10 18 / 9.41*10 19 = 9km$



## **Future Plans**



## **Future Plans**

Test material reflection with a standard gain horn

Deploy beacon to the top of the MOB 7 Repeat beacon test with an S-band horn

# Questions?

