

Summary

- A geocentric reference frame realized by time series
- Origin defined at nearly-instantaneous (weekly or daily) CM
- Currently through SLR data
- Could take other data or models in the future
- Scale realized by nearly-instantaneous SLR/VLBI data
- Geocentric coordinate time series to monitoring linear/non-linear motion instead of linear coordinate and velocity models
- Bridge fragmented geodetic observations at co-located stations
- A platform to unify time series of various geodetic techniques

Introduction

Current ITRF Status:

Secular frame characterized by X, V and a full covariance matrix from SLR, VLBI, **GPS and DORIS**

- Piece-wise linear motion models for all sites
- Origin at mean but not instantaneous CM
- CM for secular motion
- Close to CF for sub-secular motions
- The linear motion model works well and the ITRF2008 frame is quite stable at 0.3 0.5 mm/yr
- Geodetic techniques have various strengths in frame parameters
- Difficult to transfer nearly instantaneous scale information among geodetic techniques with the linear model

2. **Motivation:**

- Geodetic sites are moving constantly and non-linearly
- Co-located stations of different techniques with fragmented and short time spans
- Need nearly-instantaneous geocentric (CM) coordinates (with scale) for real-time orbit determination and global change monitoring
- Geodetic time series of different techniques are in various frames

Methodology

1. Key Features:

- Origin defined and realized at nearly instantaneous CM
- Scale realized by weekly or daily SLR/VLBI data
- Orientation defined nearly-instantaneously by convention and the no net rotation condition
- Local ties are applied once in the weeks of surveying or within the continuous segments without offsets
- Co-motion constraints are applied to most co-located sites
- Kalman Filter/RTS Smoother with fixed weekly time step
- Use Jean Boy's geophysical loading model for process noise variances (http://loading.u-strasbg.fr/)

2. **Combination Strategy**

- Use CATREF/ITRF Heritage from IGN
- Filter/Smoother Codes from JPL
- Combination done at weekly basis with all techniques using weekly/daily files

Kalman Filter Data Update

Filter Data Types:

- Weekly combined position \mathbf{X}_{c} , EOP \mathbf{X}_{n} , Transformation parameters \mathbf{T}_{k} , \mathbf{D}_{k} , \mathbf{R}_{k} for file k
- Local Ties
- Tight weekly orientation constraints; Constraints for most co-located stations to move together using pseudo-data forms with uncertainties in 0.1 mm or 0.1 mm/yr shown in the measurement equation below:

Coordinates in file k

 $\mathbf{X}_{s}^{i} = \mathbf{X}_{c}^{i} + \mathbf{T}_{k} + \mathbf{D}_{k}\mathbf{X}_{c}^{i} + \mathbf{R}_{k}\mathbf{X}_{c}^{i}$

KALREF – A Kalman Filter Approach to the International Terrestrial Reference Frame Realization

X. Frank Wu¹, Claudio Abbondanza¹, Zuheir Altamimi², T. Mike Chin¹, Xavier Collilieux², Richard Gross¹, Michael Heflin¹, Ken Hurst¹, Yan Jiang¹, Jay Parker¹

G53B-1143

component at AREQ covering the 2001 Arequipa Earthquake. Middle: GPS vertical at THU3 in Greenland showing ice loss acceleration (*Jiang et al., 2010*). Bottom:

X _g		Y _g		Zg		
Amp mm	Phase day	Amp mm	Phase day	Amp mm	Phase day	Ret
2.2	60	3.2	303	2.8	46	Eanes et al., 1997
3.2 ± 0.4	33 ± 3	2.6 ± 0.2	306 ± 2	4.3 ± 0.3	31 ± 2	Cheng et al., 2002-2010
1.8 ± 0.1	49 ± 4	2.7 ± 0.1	329 ± 2	4.2 ± 0.2	31 ± 3	Wu et al., 2002-2009
1.5 ± 0.1	54 ± 2	1.9 ± 0.1	322 ± 1	3.5 ± 0.1	20 ± 1	2002-2009
2.0 ± 0.2	77 ± 5	2.5 ± 0.1	316 ± 3	3.6 ± 0.3	25 ± 5	2002-2009

Figure 3. Geocenter motion time series from 82 global sites. derived from smoothed coordinate series using the loading model. Right: derived from estimated series with 5 cm process noise. Such series follow the