

Overview of the NASA/Haystack VLBI2010 Receiver Frontends

Christopher Beaudoin MIT Haystack Observatory

Overview

- 1. Description of NASA Broadband VLBI Receiver Frontend
- 2. Receiver Performance
- 3. Calibration Signal Injection
- 4. Procurement Logistics

- Feed optical half-angle width of 50°
- Major frontend components comprising 2-14 GHz receiver frontend :
 - Quadruple-ridged flared horn (QRFH) design Ahmed Akgiray
 - Feed designed for optimal illumination of 12m optics
 - CRY01-12 low noise amplifier (LNA) Sandy Weinreb
 - QRFH frontend installed early 2011
 - Initial sensitivity was poor owing to subreflector misalignment
 - After alignment, sensitivity was improved significantly
 - Pointing model developed for the antenna
 - Scatter in pointing offsets < 0.010° rms
- Calibration signal injection via stripline coupler

Standard Prime Focus

- Feed optical half-angle width: 80°
- Major frontend components comprising 2-14 GHz receiver frontend:
 - New QRFH design
 - Optimized for Westford and cuts off at 2.2 GHz
 - CRY01-12 low noise amplifier
- Frontend diagnostics currently underway at Haystack
- Calibration signal injection via stripline coupler

- A feed design methodology with different hardware realizations
- Designs available for good broadband matching of a wide range of reflector antenna optics:
 - 40° half-angle beamwidth feed achieves 6:1 bandwidth (e.g. 2-12 GHz)
 - 70° half-angle beamwidth feed achieves 4:1 bandwidth
- Single SMA port per polarization
 - One LNA per polarization
 - Direct phase and noise cal injection is feasible
- Dual linear polarization

- Excellent match to 50 ohms
- Easily maintained and cooled

LNA Description

Only known hardware source are in academic fab from Caltech

- Model Number CRY01-12
- Designed by Sandy Weinreb
- MMICs are fabricated by NGST
- ITAR restricition lifted can now be exported from US
- Noise temperature ~12K at 12 GHz and 20K physical temperature
- <u>VERY</u> sensitive to ESD, take ESD precautions when handling!
- Installation of diode limiters highly recommended
- Bias regulator also required to properly operate the device
- Input 1dB compression ~-40 dBm,

Total input power should not exceed -50 dBm to avoid fringe loss

LNA Description

MIT

HAYSTACK

Dewar/Cryostat - Internal Construction

IR Filter: 16 layers of 25-µm-thick Teflon film separated by a mesh of fine tissue/veil

70K Shield

A Vision for Geodetic VLB

• Sensitivity of a VLBI receiver is generally characterized by System Equivalent Flux Density (SEFD)

$$SEFD = \frac{2kT_{sys}}{A_{eff}} 1 \times 10^{26} \quad Jy - Janskys \qquad A_{eff} = \frac{\lambda^2}{4\pi} 10^{\frac{G}{10}}$$

- k: Boltzmann's Constant 1.3807x10⁻²³ T_{sys} : system temperature (K) A_{eff} : antenna effective area (m²) λ : wavelength (m) *G*: antenna gain (dB)
- VLBI2010 simulated performance is based on *2500 Jy* SEFD for 12m antenna
 - 50K T_{sys}: includes all sources of noise
 - 50% aperture efficiency $\rightarrow A_{eff} = (0.5)\pi 6^2$
- Often times the sensitivity of an reflector antenna is specified as $A_{\rm eff}/T$
 - If T = T_{sys} then the conversion from A_{eff}/T to SEFD is trivial
 - Sometimes vendor will refer to T as just noise due to ground pickup so receiver noise must be added to T before converting to SEFD

- Total System Temperature < 50K
 - Cosmic Blackbody radiation: 2.7 K
 - Atmospheric Noise: 10K

Frequency Dependent Contributions (GGAO 12m Example)

2.2 GHz

Zenith Ground Noise*: 20K

Frontend Noise: 15K

- LNA: 10K
- Coupler Loss**: 1K
- Injected***: 3K

Total Noise: 47.7K

8 GHz Zenith Ground Noise*: 8K

Frontend Noise: 11K LNA: 6K Coupler Loss**: 2K Injected***: 3K

Total Noise: 31.7K

14 GHz

Zenith Ground Noise*: 8K Frontend Noise: 26K LNA: 20K Coupler Loss**: 3K Injected***: 3K

Total Noise: 46.7K

*12m/QRFH antenna ground noise contributions computed by Bill Imbriale/NASA-JPL.

**Based on insertion loss measurement of coupler

***Noise injected through 20 dB coupler from 50 Ohm/300K impedance of calibration generator. Larger coupling factor reduces this contribution

- 12m antenna operating with efficiency > 50%
 - Illumination
 - Spillover
 - Blockage
 - Phase center
 - Polarization
 - x and y polarizations of feed pattern are not perfectly balanced -
 - loss of aperture area due to field cancellation
 - Not a metric of receiver cross-polarization contamination for on-axis fed antennas
 - n > 1 azimuth modes (BOR1)
 - Higher order modes generate more sidelobes-
 - Less power collected from desired direction
 - Can increase ground noise contribution

- <u>Feed performance must be qualified by specification of reflector optics</u>
 - W. Imbriale, "Comparison of Prime Focus and Dual Reflector Antennas for Wideband Radio Telescopes", IEEE Aerospace Conference, Big Sky, Montana, March 3-10, 2012
 - W.A. Imbriale, L. Baker, and G. Cortes-Medellin, "Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna", 6th European Conference on Antennas and Propagation, Prague, CZ, March 26-30, 2012
- Good reference for computing antenna ground noise pickup:
 - W. Imbriale, "Faster antenna noise temperature calculations using a novel approximation technique," IEEE Ant. Prop. Society International Symposium, Toronto, ON, July 2010
- Good reference on antenna feed efficiency factorization computations:
 - P.-S. Kildal, "Factorization of the Feed Efficiency of Paraboloids and Cassegrain Antennas," IEEE Trans on Antennas and Propagat., vol. AP-33, iss. 8, pp. 903-908, Feb. 1985.

Westford 18m Expected Aperture Efficiency

- Westford requires low gain feed – Half-angle 80° BW
- Difficult to match with any currently available broadband feed.

 Can afford lower Aeff on Westford
- QRFH designed to cutoff at 2.2 GHz
 - 10% smaller than 2 GHz feed
 - More defense against S-band RFI

GGAO 12m Sensitivity

- Aperture efficiency "simulation" computed by Bill Imbriale (JPL) using custom PO solver. Blockage/Thermal/Gravitational deformations not considered by solver
- Aperture efficiency "measurement" obtained using single-dish observations of TaurusA
 and estimated by on/off-source/Y-factor method.

Calibration Signal Injection

- VLBI2010 receivers must inject phase and noise calibration signals into receiver frontend
- Phase cal signals are easily corrupted by spurious signals
- Two primary injection methods proposed for VLBI
 - Direct injection
 - Radiative injection

Calibration Signal Injection

- Uses commercial microwave components to inject the calibration signals so implementation is not difficult
- Spurs (~-40 dBc) will arise but they should be time-invariant
- Some receiver performance is sacrificed
 - ~1-8K increase at 20K physical temperature
 - May be difficult to adequately cool the coupler

To receiver backend

Feed

Calibration Signal Injection

Radiative Injection

- Uses a small broadband probe to radiate calibration signals into the receiver frontend
- No receiver performance is lost since the probe is external
- Multipath spurs can arise and may be time-variant and can be difficult to detect

Procurement Logistics

- QRFH and LNAs can be ordered through Caltech
 - QRFH
 - 10,000 USD (7,500 EUR) for the GGAO 12m and Westford designs
 - For cost of a new design consult Sandy Weinreb
 - CRY01-12 LNA
 - 5,000 USD (3,800 EUR) for amplifier module
 - 1,000 USD (760 EUR) for bias regulator
 - Also contact Sandy Weinreb
- Stripline couplers for calibration signal injection
 - Pulsar Microwave: 530 USD (400 EUR)
- Haystack can provide integrated frontend solution
 - Contact Arthur Niell

