



### SLR Science Applications and ILRS Products

Erricos C. Pavlis Goddard Earth Science and Technology Center (GEST), University of Maryland, Baltimore County &

NASA Goddard 698

Meeting with Colombian Delegation GSFC, Greenbelt, September 26, 2011







### **Satellite Laser Ranging - the Technique**



Precise range measurement between an SLR station and a satellite using ultra-short laser pulses.

- Simple range measurement
- Space segment is passive
- Simple refraction model
- Night / Day Operation
- Near real-time global data availability
- Satellite altitudes from <300 km to geosynchronous satellites, and the Moon (Mars also with transponders)



- Unambiguous ~ cm accurate orbits
- Long-term stable geophysical time series



GODDARD SPACE FLIGHT CENTER

UMBC

# International Laser Ranging Service



- Primary Products (Level 1)
  - Precision Orbit Determination (POD)
  - Time History of Station Positions and Motions & EOP
- Science Products (Level 2)
  - Terrestrial Reference Frame (Center of Mass and Scale)
  - Plate Tectonics and Crustal Deformation
  - Static and Time-varying Gravity Field (C/S<sub>n,m</sub>)
  - Earth Orientation Parameters (EOP: Polar Motion, length of day)
  - Orbits and Calibration of Altimetry Missions (Oceans, Ice)
  - Total Earth Mass Distribution
  - Space Science Tether Dynamics, etc.
  - Relativity Measurements and Lunar Science
- More than 60 Space Missions Supported since 1965
- Four Missions "Rescued" in the Past Decade



GODDARD SPACE FLIGHT CENTER





### **The ILRS Network**







### Non-uniform System Performance Across Sites & Time





7824 San-Fernand COM vs SLRF2005 From ilrsa













#### ILRS-Tracked Satellite Missions (POD Support 3Q2011)





GODDARD SPACE FLIGHT CENTER









**Current SLR Error Budget** 



Uncertainties due to Limited Knowledge or Modeling *NOW* 

5-10 mm

1-5 mm

International Laser Ranging Service

#### 1-5 mm

Improved s/c CoM offsets New refraction modeling with gradients Atmospheric Loading & Gravitational Potential Better ground survey and eccentricity monitoring

1-5 mm

Copyright 2006 © Teddy Pavlis

**Improvements:** 



GODDARD SPACE FLIGHT CENTER

10-30 mm





- Nine ACs and two CCs:
  - ASI, BKG, DGFI, ESA, GA, GFZ, GRGS, JCET, and NSGF
- AWG Products and Services:
  - Operational weekly & daily products routinely delivered
  - ITRF2008-based TRF used internally (SLRF2008)
  - Daily data QC and station feedback
  - Orbit products (SP3C files)
  - Long-wavelength gravity variations (for GGOS)
  - New & returning station validation
  - Validation of new data format (CRD)









### **Geocenter Variation from SLR**

COM vs SLRF2005 From ilrsa









## **Geocenter Motion**







Earth's center of mass relative to the origin of ITRF2000, projected in the equatorial plane. Large excursions have been correlated with recent El Niño events (1996-97 and 2002-03).

- Motion of the ITRF origin w.r.t. the geocenter with secular trends removed
  - Shown here is the change in the origin of the crust-fixed frame w.r.t. the center of mass due to non tidal mass transport in the atmosphere and hydrosphere.







### Earth's Oblateness from SLR (seasonal variation removed)







Apollo 14





- 42 years of observations
- Post-newtonian model at cm level
- high long-term stability (orbit, **orientation**)

reference frames, Earth

- relativity tests

GODDARD SPACE FLIGHT CENTER



Number of LLR NPs



#### • 1970 - 2011: ca.17,000 normal points



















- SLR is an integral part of the Space Geodetic Networks (Past, Present and Future)
- SLR Products support a large gamut of scientific investigations in many disciplines
- The contribution of SLR to the ITRF is crucial and unique (Origin)
- The new global network will build on the past achievements and extend our capabilities to well beyond what we do today
- We are always looking for new partners!









### **Back-up slides**







### **ILRS-Station Performance**







🚺 GODDARD SPACE FLIGHT CENTER









Meeting with Delegation from Colombia, GSFC, September 26, 2011

GODDARD SPACE FLIGHT CENTER



# The Next Generation SLR Systems



The next generation systems will operate with:

International Laser Ranging Service

- <u>higher repetition rate</u> (100 Hz to 2 kHz) lasers to improve data yield, improve normal point precision, and pass interleaving;
- <u>photon-counting detectors</u> to reduce the emitted laser energies by orders of magnitude and reduce optical hazards on the ground and at aircraft (some are totally eye-safe);
- <u>multi-stop event timers</u> with few ps resolutions to improve low energy performance in a high solar-noise environment;
- considerably <u>more automation</u> to permit remote and even autonomous operation;

Many systems will operate at single photon levels with

- Single Photon Avalanche Diode (SPAD) detectors or
- MicroChannel Plate PhotoMultiplier Tubes (MCP/PMTs).

Some systems are experimenting with two-wavelength operations to test atmospheric refraction models and/or to provide unambiguous calibration of the atmospheric delay.



🚯 GODDARD SPACE FLIGHT CENTER

UAW, ETH, Zürich, Switzerland, 16-17 September, 2011













GODDARD SPACE FLIGHT CENTER



# **Target Signature (CoM)**







# **Target signature (CoM)**



| Stn<br>pad<br>ID | Name         | Pulse<br>length<br>(ps) | Detector | Regime<br>(single, few,<br>multi) | Editing<br>Level<br>(×σ) | Calib.<br>St.<br>error<br>(mm) | LAGEOS<br>St. error<br>(mm) | LAGEOS<br>CoM range<br>(mm) | LAGEOS<br>CoM<br>ADOPTED<br>(mm) |
|------------------|--------------|-------------------------|----------|-----------------------------------|--------------------------|--------------------------------|-----------------------------|-----------------------------|----------------------------------|
| 1873             | Simeiz       | 350                     | PMT      | No CNTL                           | 2.0                      | 60                             | 70                          | 248-244                     | 246                              |
| 1884             | Riga         | 130                     | PMT      | CNTLD s->m                        | 2.0                      | 10                             | 15                          | 252-248                     | 250                              |
| 7080             | McDonald     | 200                     | MCP      | CNTLD s->m                        | 3.0                      | 8.5                            | 13                          | 250-248                     | 249                              |
| 7090             | Yaragadee    | 200                     | MCP      | CNTLD f->m                        | 3.0                      | 4.5                            | 10                          | 250-248                     | 249                              |
| 7105             | Greenbelt    | 200                     | MCP      | CNTLD f->m                        | 3.0                      | 5                              | 10                          | 250-248                     | 249                              |
| 7110             | Mon. Peak    | 200                     | MCP      | CNTLD f->m                        | 3.0                      | 5                              | 10                          | 250-248                     | 249                              |
| 7124             | Tahiti       | 200                     | MCP      | CNTLD f->m                        | 3.0                      | 6                              | 10                          | 250-248                     | 249                              |
| 7237             | Changchung   | 200                     | CSPAD    | CNTLD s->m                        | 2.5                      | 10                             | 15                          | 250-245                     | 248                              |
| 7249             | Beijing      | 200                     | CSPAD    | No CNTL, m                        | 2.5                      | 8                              | 15                          | 255-247                     | 251                              |
| 7355             | Urumqui      | 30                      | CSPAD    | No CNTL                           | 2.5                      | 15                             | 30                          | 255-247                     | 251                              |
| 7405             | Conception   | 200                     | CSPAD    | CNTLD s                           | 2.5                      | 15                             | 20                          | 246-245                     | 246                              |
| 7501             | Harteb.      | 200                     | PMT      | CNTLD f->m                        | 3.0                      | 5                              | 10                          | 250-244                     | 247                              |
| 7806             | Metsahovi    | 50                      | PMT      | ?                                 | 2.5                      | 15                             | 17                          | 254-248                     | 251                              |
| 7810             | Zimmerwald   | 300                     | CSPAD    | CNTLD s->f                        | 2.5                      | 20                             | 23                          | 246-244                     | 245                              |
| 7811             | Borowiec     | 40                      | PMT      | No CNTL f                         | 2.5                      | 16                             | 23                          | 256-250                     | 253                              |
| 7824             | San Fernando | 100                     | CSPAD    | No CNTL s->m                      | 2.5                      | 30                             | 25                          | 252-246                     | 249                              |
| 7825             | Stromlo      | 10                      | CSPAD    | CNTLD s->m                        | 2.5                      | 4                              | 10                          | 257-247                     | 252                              |
| 7832             | Riyadh       | 100                     | CSPAD    | CNTLD s->m                        | 2.5                      | 10                             | 15                          | 252-246                     | 249                              |
| 7835             | Grasse       | 50                      | CSPAD    | CNTLD s->m                        | 2.5                      | 6                              | 15                          | 255-246                     | 250                              |
| 7836             | Potsdam      | 35                      | PMT      | CNTLD s->m                        | 2.5                      | 10                             | 20                          | 256-252                     | 254                              |
| 7838             | Simosato     | 100                     | MCP      | CNTLD s->m                        | 3.0                      | 20                             | 40                          | 252-248                     | 250                              |
| 7839             | Graz         | 35                      | CSPAD    | No CNTL m                         | 2.2                      | 3                              | 9                           | 255-250                     | 252                              |
| 7839             | Graz kHz     | 10                      | CSPAD    | No CNTL s->f                      | 2.2                      | 3                              | 9                           | 255-250?                    | 252                              |
| 7840             | Herstmonceux | 100                     | CSPAD    | CNTLD s                           | 3.0                      | 6                              | 15                          | 246-244                     | 245                              |
| 7840             | Hx kHz       | 10                      | CSPAD    | CNTLD s                           | -1.5,+2.5                | 3                              | 9                           | 245                         | 245                              |
| 7841             | Potsdam 3    | 50                      | PMT      | CNTLD s->f                        | 2.5                      | 10                             | 18                          | 254-248                     | 251                              |
| 7941             | Matera       | 40                      | MCP      | CNTLD m                           | 3.0                      | 1                              | 5                           | 252-248                     | 250                              |
| 8834             | Wettzell     | 80                      | MCP      | No CNTL f->m                      | 2.5                      | 10                             | 20                          | 252-248                     | 250                              |

GODDARD SPACE FLIGHT CENTER











**Object of measurement:** 

 $\dot{\Omega}^* = \frac{1}{2} (\dot{\Omega}^I + \dot{\Omega}^{II})$ 



GODDARD SPACE FLIGHT CENTER

• LARES Parameters:

LAser Relativity & Earth Science Satellite

- Material
- Diameter
- Mass

LARES -

- Altitude
- Inclination
- Eccentricity Circular orbit
- CCRs (92) LAGEOS type
- A/m ratio 0.36 x LAGEOS

Launch is with ESA's new launcher VEGA, on its inaugural test launch, in late 2011/ early 2012



- Tungsten alloy (95%)
  - ~420 kg 1500 km ~70°



# The LAGEOS III Experiment



International Laser Ranging Service The original SLR experiment (LAGEOS III) expected exactly counterrotating satellites in supplementary inclinations, to cancel classical Newtonian rates and isolate the gravitomagnetic precession. LARES will be based on the same principle.



Object of measurement:

 $\dot{\Omega}^* \;=\; \frac{1}{2}\,(\dot{\Omega}^I + \dot{\Omega}^{III})$ 





# **Space Geodetic Network**



International Laser Ranging Service











#### Difference in the RMS of fit of weekly arcs of LAGEOS SLR for 2001 & 2006

#### and four Atmospheric loading treatments (one being NO loading)

|   | Variabl    | e Points | s Mean | Mediar | n RMS | Std Deviatio |
|---|------------|----------|--------|--------|-------|--------------|
|   | ∆RMS v0-NO | 52       | 3.4    | 2.7    | 4.45  | 2.87         |
| Γ | ∆RMS v1-NO | 104      | 2.9    | 2.1    | 4.31  | 3.16         |
|   | ∆RMS v2-NO | 52       | 2.7    | 1.7    | 4.09  | 3.08         |
| Τ | ∆RMS v1-v0 | 52       | 0.4    | 0.0    | 0.92  | 0.82         |
|   | ∆RMS v2-v1 | 52       | 1.7    | 1.4    | 2.58  | 1.96         |

"v0": 1970/01 - 2002/08: ECMWF Reanalysis (ERA40), with a spatial resolution of 1.125 degrees

"v1": 2000/12 - 2006/12: ECMWF Operational, with a spatial resolution of about 0.350 degrees

"v2": 2005/10 - now: ECMWF Operational, with a spatial resolution of about 0.250 degrees





**Gradient-corrected SLR Residuals Statistics** 



| Method                    | ΔBias (mm)    | $\Delta\sigma^2$ (%) |
|---------------------------|---------------|----------------------|
| AIRS                      |               |                      |
| <b>RT</b> <sub>grad</sub> | $0.3 \pm 0.3$ | 14.0                 |
| RT <sub>3D</sub>          | 0.9 ± 1.1     | 24.8                 |
| ECMWF                     |               |                      |
| <b>RT</b> <sub>grad</sub> | $0.1 \pm 0.5$ | 10.8                 |
| RT <sub>3D</sub>          | 0.6 ± 1.2     | 22.5                 |

GODDARD SPACE FLIGHT CENTER

Meeting with Delegation from Colombia, GSFC, September 26, 2011



UMBC



### **LAGEOS 1 Statistics for 2008**



#### Actual ILRS Data !!!









GODDARD SPACE FLIGHT CENTER

Meeting with Delegation from Colombia, GSFC, September 26, 2011

Count





80

50

60

UMBC



# **IERS Conventions 2010**



• The ILRS AWG complies with the IERS Conventions as they evolve, although our products change at specific instants, usually with a reanalysis of all data, in order to keep our online available products consistent.

- The 2010 Conventions will become our official standard once we release our next re-analysis (sometime in mid-2012).
- http://www.iers.org/nn\_11254/ IERS/EN/Publications/ TechnicalNotes/tn36.html

International Earth Rotation and Reference Systems Service (IERS) Service International de la Rotation Terrestre et des Systèmes de Référence

IERS Technical Note No. 36

#### **IERS Conventions (2010)**

Gérard Petit<sup>1</sup> and Brian Luzum<sup>2</sup> (eds.)

IERS Conventions Centre

<sup>1</sup> Bureau International des Poids et Mesures (BIPM) <sup>2</sup> US Naval Observatory (USNO)

Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am Main 2010





GODDARD SPACE FLIGHT CENTER